DS Spé Physique N°1

On demande des réponses rédigées et des résultats tenant compte du bon nombre de chiffres significatifs

Exercice n°1: Solution d'éthanol : (_6 points)

On dispose d'un volume égal à 100 mL d'une solution aqueuse d'éthanol (C₂H₆O), de concentration molaire égale à 2,00.10⁻¹ mol.L⁻¹

- 1°) a) Calculer la masse molaire d'éthanol
- b) Quelle masse d'éthanol a été dissoute pour obtenir 100mL de solution d'éthanol de concentration 2,00.10⁻¹ mol.L⁻¹ ?
 - c) Quelle est la concentration massique d'éthanol de cette solution ?
- 2°) On désire préparer 20mL une solution fille de concentration 2,00.10⁻² mol.L⁻¹ à partir de la solution précédente.
 - a) Comment se nomme cette opération? Justifier
 - b) Quel volume de solution mère devra-t-on prélever pour fabriquer la solution fille?
 - c) Avec quel instrument de verrerie va-t-on prélever ce volume ?

Données: $M(C) = 12.0 \text{ g.mol}^{-1}$; $M(H) = 1.00 \text{ g.mol}^{-1}$; $M(O) = 16.0 \text{ g.mol}^{-1}$

Exercice n°2: Utilisation d'un briquet (6 points)

Certains briquets contiennent du butane liquide.

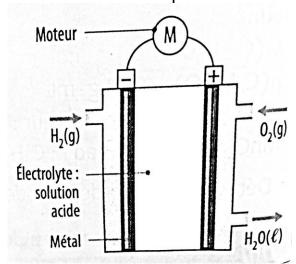
- 1°) a) Déterminer le volume V du briquet considéré comme un parallélépipède (pavé) dont les dimensions sont :
- L= 5,00 cm, I= 2,00 cm et H=1,00 cm.
- b) Déterminer le volume occupé V_1 par le butane liquide en m^3 sachant que celuici remplit le briquet aux trois quarts.
- 2°) Dans les conditions de l'étude, la masse volumique du butane liquide est ρbutane = 580 kg.m⁻³. Démontrer que la quantité de matière n de butane liquide contenu dans le briquet est n=7,50.10⁻² mol.
- 3°) Dans les conditions habituelles d'utilisation, le volume molaire gazeux est V_{M} = 24 L.mol⁻¹ et le volume de butane gazeux consommé à chaque usage est v' = 20 mL. Déterminer le nombre maximal N d'utilisation du briquet.

Donnée: M(butane) = 58,0 g.mol⁻¹

Exercice n°3: Demi-équations électroniques et équation bilan (2 points)

- 1°) Etablit les ½ équations électroniques des couples oxydant-réducteur suivants :
- a) $Fe^{3+}_{(I)} / Fe^{2+}_{(I)}$
- b) $IO_{3^{-}(aq)} / I_{2(aq)}$
- 2°) Ecrire l'équation bilan d'oxydo-réduction de la réaction de I_{2(aq)} avec Fe³⁺(I)

DS Spé Physique N°1


Exercicen°4 La pile à combustible (6 points)

La TOYOTA Mirai est la première Berline à pile à combustible lancée au Japon fin 2014

Document 1: Présentation du véhicule

Une fois le réservoir rempli, le véhicule parcourt près de 500 km et ne rejette que de la vapeur d'eau. On estime que la consommation en dihydrogène H₂ de ce véhicule est 0,690kg pour 100 km

Document 2: Principe et Schéma de la pile à combustible

Une pile permet de convertir une énergie chimique en énergie électrique. Elle est constituée de deux électrodes à la surface desquelles ont lieu des transformations d'oxydo- réduction La pile à combustible est alimentée en dihydrogène et en dioxygène en continu. Cette pile fonctionne grâce à une transformation d'oxydo-réduction qui se révèle totale

Document 3: Données

Couples Oxydant / Réducteur : $H^+_{(aq)}$ / $H_{2(g)}$ et $O_{2(g)}$ / $H_2O_{(I)}$,

Volume molaire occupé par H₂ dans le réservoir : V_m = 0,0700L.mol⁻¹

 $M(H) = 1,00g.mol^{-1}$ $M(O) = 16,0g.mol^{-1}$

- 1°) Justifier que ce véhicule est respectueux de l'environnement
- 2°) Ecrire l'équation de la réaction quand la voiture est en fonctionnement
- 3°) Quel est le réactif oxydant ? Le réactif réducteur ? Justifier.
- 4°) a) Montrer que la quantité de matière de H₂ nécessaire afin de parcourir 500km est de 1,72.10³ mol
- b) En déduire la masse d'eau rejetée dans l'atmosphère pendant un trajet qui nécessite le plein complet du véhicule.
- 5°) Déterminer la valeur du volume du réservoir de stockage du dihydrogène